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The effects of fluid inertia on the pressure drop required to drive fluid flow through
periodic and random arrays of aligned cylinders is investigated. Numerical simulations
using a lattice-Boltzmann formulation are performed for Reynolds numbers up to
about 180.

The magnitude of the drag per unit length on cylinders in a square array at moderate
Reynolds number is strongly dependent on the orientation of the drag (or pressure
gradient) with respect to the axes of the array; this contrasts with Stokes flow through
a square array, which is characterized by an isotropic permeability. Transitions to
time-oscillatory and chaotically varying flows are observed at critical Reynolds
numbers that depend on the orientation of the pressure gradient and the volume
fraction.

In the limit Re' 1, the mean drag per unit length, F, in both periodic and random
arrays, is given by F}(µU )¯k

"
k

#
Re#, where µ is the fluid viscosity, U is the mean

velocity in the bed, and k
"

and k
#

are functions of the solid volume fraction φ.
Theoretical analyses based on point-particle and lubrication approximations are used
to determine these coefficients in the limits of small and large concentration,
respectively.

In random arrays, the drag makes a transition from a quadratic to a linear Re-
dependence at Reynolds numbers of between 2 and 5. Thus, the empirical Ergun
formula, F}(µU )¯ c

"
c

#
Re, is applicable for Re" 5. We determine the constants c

"
and c

#
over a wide range of φ. The relative importance of inertia becomes smaller as

the volume fraction approaches close packing, because the largest contribution to the
dissipation in this limit comes from the viscous lubrication flow in the small gaps
between the cylinders.

1. Introduction

This paper addresses fluid flow through periodic and random arrays of aligned
cylinders. The effects of fluid inertia on the pressure drop required to drive the flow will
be determined for Reynolds numbers, Re¯ 2ρUa}µ, between 0 and 180. Here, ρ and
µ are the fluid density and viscosity, a is the radius of the cylinders, and U is the average
velocity throughout the bed. A fluid flow through a periodic array of cylinders arises
on the shell side of a heat exchanger. While the Reynolds numbers in most heat
exchangers are larger than those investigated here, pin fin heat exchangers with Re¯
10–100 have been proposed as a means of cooling electronic components (Fisher,
Torrance & Sikka 1997). Hollow-fibre filters contain disordered arrays of aligned fibres
and the Reynolds number of the shell-side flow is typically 1–10. In many other fibrous
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filters such as those used to remove airborne particulates, the fibres are not aligned, but
the current investigation still provides a first step toward understanding the finite
Reynolds number flow through these media. An important consideration in the design
of heat exchangers and fibrous filters is the pressure drop}flow rate relationship and
this will be the primary focus of the present investigation.

This study of flow in fixed arrays of cylinders also represents an interesting first step
toward understanding the effects of fluid inertia on the behaviour of suspensions and
fixed beds. While extensive theoretical and computational studies have been developed
for a wide range of viscous suspension flows (Brady & Bossis 1988), studies that include
inertia have largely been limited to suspensions in which the inertia is entirely in the
particulate phase (Sangani et al. 1996), the flow is inviscid and irrotational (Sangani &
Didwania 1993), or a modest number of particles are included in the computation
(Feng, Hu & Joseph 1994). Fixed beds are a natural starting point for investigations
of fluid inertia effects on the properties of particle dispersions, because it is not
necessary to follow the evolution of the particulate-phase microstructure to obtain a
statistical steady state in these systems. The two-dimensional nature of the flow in the
present system also affords a significant economy of computational effort.

Extensive theoretical and computational studies have led to a quite thorough
understanding of Stokes flow (Re¯ 0) in periodic and random arrays of aligned
cylinders. Owing to the linearity of the Stokes equations of motion, the mean velocity
U is proportional to the pressure gradient driving the flow at Re¯ 0. The coefficient
of proportionality is a scalar (k}µ, where k is the permeability) when the medium is
isotropic. The permeability is also a scalar in a simple square array of cylinders as a
result of the principle of linear superposition. Hasimoto (1959) determined the
permeability of simple square arrays of cylinders in the limit where the volume fraction
of the cylinders is small. Sangani & Acrivos (1982) extended this analysis to arbitrary
area fractions by including a large number of multipoles in the expansion for the
velocity disturbance caused by the cylinders. They also provided an analytical solution
for the permeability of highly concentrated arrays using lubrication theory to
determine the large resistance to driving the fluid through the small gaps between the
cylinders. The permeability was found to be proportional to ε&/# in the limit εU 0,
where aε is the gap between neighbouring cylinders. We will derive the first effects of
fluid inertia on this lubrication flow.

Theoretical predictions for the permeabilities of dilute fixed beds can be obtained
using a self-consistent approximation, in which the drag on a particle is evaluated using
an equation of motion for the surrounding medium that includes a body force
representing the drag on the surrounding particles. This approach was first pursued for
fixed beds of spheres by Brinkman (1947) and later applied to arrays of aligned
cylinders by Spielman & Goren (1968) and Howells (1974). In the context of the fixed
bed of spheres, Hinch (1977) showed that such a self-consistent calculation yields the
leading-order solution for small volume fractions of the ensemble-averaged equations
of motion in the bed.

Numerical simulations of Stokes flow through arrays of randomly positioned,
aligned cylinders were first performed by Sangani & Yao (1988) using a multipole
representation of the velocity disturbance caused by each of the cylinders. Sangani &
Mo (1994) performed more extensive simulations using a slightly more sophisticated
method in which the lubrication interactions between cylinders separated by small
distances are accounted for using multipole expansions about the centre of the
lubrication gap in addition to the expansions around the centres of the particles.
Ghaddar (1995) used a finite element method to determine the permeability. He
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obtained results for a larger number of volume fractions but with slightly less statistical
accuracy than Sangani & Mo (1994).

The literature concerning inertial flows is more limited. Edwards et al. (1990) and
Ghaddar (1995) computed the fluid flow through periodic arrays of cylinders over a
range of Reynolds numbers (0–180). Bittleston (1986) performed similar computations
and obtained a favourable comparison between the computed streamline patterns and
his experimental observations. However, the primary emphasis of these authors was on
situations in which the pressure gradient was parallel to one of the primary axes of the
periodic array. We will see that the nature of the flow depends strongly on the
orientation of the pressure gradient relative to the primary axis of the array and the
pressure gradient required to drive a given velocity is generally much larger for off-axis
flows. Ghaddar (1995) also provided some limited results for inertial flows through
random arrays of cylinders. However, the statistical accuracy of these results is poor
because they were performed on arrays of 16 or fewer cylinders without any ensemble
averaging. In an investigation conducted concurrently with our own, Noble, Georgiadis
& Buckius (1997) obtained statistically accurate results for the pressure drop through
random arrays of cylinders with octagonal cross-sections for Reynolds numbers up to
30 using a lattice-Boltzmann method. In addition to the pressure drop, Noble et al. also
reported data for the fluid velocity distribution function and the conditional average
velocity with one cylinder’s position fixed.

Although there are no theoretical studies of the effect of inertia in two-dimensional
porous media, there are two related studies. Tamada & Fujikawa (1957) derived the
drag on a single row of periodically positioned cylinders for Re' 1 but Re(H}a)¯O(1).
Here H is the spacing between the cylinders and the analysis was valid for H( a.
This singular perturbation study considered a viscous-dominated inner region and
an outer region where both viscous and inertial effects were important. We will pursue
an analogous study of the drag in a simple square array of cylinders. Kaneda (1986)
used an ensemble-averaged-equation approach to determine the drag in a dilute fixed
bed of spheres when Re' 1 but Reφ−"/#¯O(1), so that inertia was negligible on the
length scale of the particle radius but important on the scale of the Brinkman screening
length. Here, φ is the solids volume fraction. We will perform an analogous study for
a two-dimensional random porous media.

Most previous studies of fluid flow in suspensions and fixed beds have been based
on methods in which the velocity field is expressed in terms of multipole expansions but
these methods are only suitable for Stokes flow (Bossis & Brady 1988) or inviscid flows
(Sangani & Didwania 1993). To simulate the incompressible Navier–Stokes equations
at finite values of the Reynolds number, we will use the lattice-Boltzmann simulation
method described in detail by Ladd (1994a). This method has been tested by
comparing its predictions for a wide variety of Stokes flow problems with results of
multipole methods and comparing the predictions for the finite-Reynolds-number
flows past a single row of cylinders and through a cubic array of spheres with finite
difference results (Ladd 1994b).

In §2, we give a brief description of the numerical method used in this study. Sections
3 and 4 contain results for periodic and random arrays of cylinders, respectively. In
each of these sections, we first develop theoretical predictions for the first effects of
inertia on the mean pressure gradient in the array (or, equivalently, the mean drag on
the cylinders) at small Reynolds number and compare these theories with the results
of numerical simulations. We then present numerical results for moderate Reynolds
number.
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2. Lattice-Boltzmann simulations

This section provides a brief description of the lattice-Boltzmann simulation method.
A more thorough discussion of the method implemented in this paper is given in Ladd
(1994a). We solve a Boltzmann equation for the one-particle velocity distribution
function for a gas of molecules that translate from node to node on a cubic lattice with
a discrete set of velocities c

i
. The distribution function n

i
(r, t) describes the number

density of molecules at node r at time t that have a velocity c
i
. The mass density ρ,

momentum density j¯ ρu, and momentum flux Π¯ ρuu®T can be determined as
moments of velocity distribution:

ρ¯3
i

n
i
, j¯3

i

n
i
c
u
, Π¯3

i

n
i
c
i
c
i
. (1)

Here u is the mass average velocity and T is the stress tensor. The computational utility
of the lattice-Boltzmann equation is related to the observation that only a small
number of discrete velocities are needed to provide a kinetic model that will produce
the Navier–Stokes equations for the moments of the velocity distribution (Frisch,
Hasslacher & Pomeau 1986). In the present model, there are 18 velocities that allow the
molecules to move to the nearest and next-nearest neighbours of a simple cubic lattice
in a single time step. Thus, there are six velocities of speed 1 corresponding to the (100)
directions of the lattice and 12 velocities of speed o2 corresponding to the (110)
directions.

The time evolution of the distribution functions n
i
is described by a discrete analogue

of the linearized Boltzmann equation (Ladd 1994a) :

n
i
(rc

i
, t1)¯ n

i
(r, t)∆

i
(n(r, t)), (2)

where ∆
i
is the change of n

i
due to the instantaneous molecular collisions occurring at

the lattice nodes. All lengths are non-dimensionalized with the lattice spacing and times
with the time step. The collision operator ∆(n) depends on all of the number densities
n
i
at the node denoted collectively as n(r, t). This collision operator is chosen to satisfy

mass and momentum conservation and produce the Newtonian constitutive equation
with the desired value of viscosity. The applied pressure gradient driving the flow is
simulated as a constant body force that causes an increase in the momentum of fluid
molecules at each node at each time step. After each collision, the molecules propagate
to the next node rc

i
. Note that the evolution equations (2) are the discretized form

of a set of linear partial differential equations. As in the standard kinetic theory of gases
(Chapman & Cowling 1970), the nonlinear term ¡[(ρuu) arises from deriving the
moment equation corresponding to a linearized Boltzmann equation. The lattice-
Boltzmann method is conceptually related to lattice-gas models (Ladd & Frankel
1990) ; however, the use of a Boltzmann formulation for the molecular velocity
distribution function avoids the statistical fluctuations inherent in simulating the
dynamics of individual lattice-gas molecules.

Each solid cylinder is defined by a circle of radius a
!

which cuts some of the links
between lattice nodes. The fluid particles moving along these links interact with the
solid surface at boundary nodes placed halfway along the links. Thus, a discrete
representation of the particle surface is obtained, which becomes more circular as the
particle-radius-to-node spacing ratio, a

!
, is made larger. A fluid particle impinging on

a boundary node is reflected so that, in a single time step, it returns to the lattice node
from which it came with an opposite velocity. As a result of the boundary node
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interactions, the particle exerts a force on the fluid and the total force and torque acting
on each particle as well as the local force per unit area are readily obtained from the
simulation.

The discrete lattice causes the surface of the cylinder to be rough and thus its effective
hydrodynamic radius, a, differs from the nominal radius, a

!
. We determined a by

computing the drag on a dilute (φ! 0.1) square array of cylinders in the limit of small
Reynolds number and comparing the result with that of Sangani & Acrivos (1982). In
this way it was determined that a¯ a

!
0.3 for all a

!
¯ n0.5 where n is an integer

greater than 3. In some of the very dilute arrays, we also make use of cylinders with
a
!
¯ 2.5, which corresponds to a¯ 2.7, and with a

!
¯ 0.5, which corresponds to

a¯ 0.61. This effective radius is taken to be independent of fibre concentration and
Reynolds number. Comparisons between results with different degrees of grid
refinement and comparisons with results of other numerical methods confirm that a φ-
and Re-independent effective radius adequately characterizes the effects of roughness
over the range of Reynolds numbers investigated in this study.

The lattice-Boltzmann method reproduces the momentum and mass conservation
equations for a Newtonian fluid. In its present formulation, however, it does not
produce the correct energy equation. As a result, our results are restricted to low Mach
numbers, M¯U}c

s
' 1, where c

s
¯ 1}o2 is the speed of sound. In order to produce

a large Reynolds number, Re¯ 2aU}ν, we can use a large radius, a, and}or a small
kinematic viscosity, ν. The collision rules can be adjusted to produce different values
of ν. In most of our calculations ν¯ 0.01. However, the viscosity and cylinder radius
were varied for several representative simulations while maintaining a constant Re to
assure that the effects of the discrete lattice and the compressibility of the lattice gas
were small.

The size of the lattice required to obtain accurate results is primarily controlled by
the need to resolve the flow in the gaps between neighbouring cylinders and to maintain
a small Mach number (for fixed µ). The velocity of the fluid in the thin gaps between
two cylinders is inversely proportional to the gap thickness and therefore the
requirement of maintaining a small Mach number implies a minimum permissible
value for the gap thickness. We found that about 10 lattice spacings across this gap
provided accurate results (errors of less than about 3%) for Re! 80 in the periodic
arrays and Re! 40 in the random arrays and that 20 lattice spacings allowed accurate
calculations up to Reynolds numbers of about 180 in periodic and 80 in random arrays.
The ratio of the maximum velocity to the mean velocity will be larger in a random than
a periodic array and the computations are only accurate and stable if the Mach number
based on the maximum velocity is small. This accounts for the more stringent
requirement for grid resolution in random arrays.

We solved an initial value problem in which the fluid velocity was zero throughout
the domain and a body force (or pressure gradient) was applied instantaneously at
t¯ 0. The calculation was continued until the mean velocity (averaged over the volume
of the bed) changed by less than 1% during the final 25% of the run. Because the
transient was approximately exponential, this ensured that the difference between the
reported value of the mean velocity and the long-time asymptote was less than 1%. In
cases where the flow was unsteady, this criterion was applied to a temporally and
spatially averaged velocity. Typically, 10000–40000 time steps were required, with
slower transients occurring for larger non-dimensional gap thicknesses and smaller
Reynolds numbers.
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3. Square arrays of cylinders

3.1. Low Reynolds number beha�iour

3.1.1. Numerical results for on-axis flows

To start, let us consider the first effects of fluid inertia on the flow in square arrays
of cylinders. A force balance on the fluid in the bed at steady state indicates that the
pressure gradient is equal to the product of the number of cylinders per unit area,
φ}(πa#), and the drag per unit length on each cylinder (or the mean drag in the case
of unsteady flow or flow in a random array), which will be denoted as F. Thus, the
results could be presented either in terms of pressure gradient or drag force and we will
adopt the latter choice.

Mei & Auriault (1991) showed that the average drag acting on a particle in a porous
medium with fore-aft symmetry at small Reynolds number contains a term
proportional to the mean fluid velocity and a small inertial correction proportional to
the product of the square of the Reynolds number and the mean velocity. If the array
is random, then it is only required that the statistics of the structure have fore-aft
symmetry. For the present example of a two-dimensional array, this corresponds to

F

µU
¯k

!
k

#
Re# for Re' 1. (3)

In the present context, this result can be understood easily in terms of the fore-aft
symmetry of the array and the properties of the Navier–Stokes equations:

~*#u*®¡*p*¯Reu*[¡*u*, (4)

¡*[u*¯ 0. (5)

Here, u*¯u}U, p*¯ pa}µU, and ¡*¯ a¡. If we expand the velocity and pressure in
regular perturbation series, u*¯u

!
Reu

"
Re#u

#
and p*¯ p

!
Rep

"
Re# p

#
, then

the leading-order velocity and pressure fields satisfy Stokes equations while the higher-
order velocity and pressure fields contain inertial terms that depend on the lower-order
velocity fields :

~*#u
!
®¡*p

!
¯ 0, (6)

~*#u
"
®¡*p

"
¯u

!
[¡*u

!
, (7)

~*#u
#
®¡*p

#
¯u

!
[¡*u

"
u

"
[¡*u

!
, (8)

¡*[u
i
¯ 0 for all i. (9)

The linearity of Stokes equations of motion, (6) and (9), together with the symmetry
of the medium imply that u

!
is an even function and p

!
an odd function of position.

The right-hand side of (7) is an odd function of position, so that u
"
is odd and p

"
is even.

As a result, the O(Re) contribution to the force per unit area acting on the surface of
the cylinder, n[[µ(¡u

"
®¡u†

"
)®p

"
I ], is an odd function of position and there is no net

O(Re) contribution to the force on the cylinder. In a similar manner, it can be seen that
u
#

is even and p
#

is odd, so that there is an O(Re#) correction to the force.
Our computations confirm (3). For example, the force per unit length acting on each

cylinder in a square array of volume fraction φ¯ 0.2 when the mean velocity is parallel
to the primary axis of symmetry of the array (on-axis flow) is compared with (3) in
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F 1. The force per unit length on a cylinder in a square array at low Reynolds numbers (circles)
is compared with the asymptotic form (3) (line) with k

!
¯ 51.19 and k

#
¯ 0.065. The cylinder radius

was a¯ 9.8.
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F 2. The force per unit length on a cylinder in a simple square array at zero Reynolds number
is plotted as a function of the volume fraction φ. k

!
is the force per unit length non-dimensionalized

by µU. D, Computations with 10 lattice nodes across the gap between particles ;V, a refined mesh,
with 20 nodes across the gap; *, ^, computations for dilute arrays with a¯ 2.7 and a¯ 0.61,
respectively ; lines, (10) and (12), i.e. the low- and high-φ asymptotes of Sangani & Acrivos (1982) ;
, computational results of Sangani & Acrivos (1982).

figure 1. By performing a similar regression analysis for the drag on cylinders due to
on-axis flow over a range of volume fractions, we obtained the coefficients k

!
(φ) and

k
#
(φ) plotted in figures 2 and 3, respectively. At moderate and large volume fractions,

φ& 0.05, the lattice was chosen so that there would be 10 nodes in the gap between
neighbouring particles and the corresponding results are plotted as circles in figures 2
and 3. The diamond corresponds to an array with φ¯ 0.6 and 20 nodes across the gap.
In order to produce arrays with very small volume fractions, some calculations were
done with quite small cylinder radii of a¯ 2.7 (squares) and a¯ 0.61 (triangles). The
solid lines are theoretical predictions that will be described below.
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F 3. The coefficients k
#

defined in (3) is plotted as a function of volume fraction for a simple
square array. The symbols are as defined in figure 2. The curves are the theoretical results, (32) and
(13) for low and high φ, respectively.

The results for the drag at zero Reynolds number (k
!
) can be compared with

multipole solutions of Stokes equations of motion obtained by Sangani & Acrivos
(1982). The lattice-Boltzmann computations with 10 nodes across the gap (circles in
figure 2) are within 3% of the multipole results (crosses) except at the highest volume
fraction φ¯ 0.6 where the error is 11%. However, increasing the number of nodes
across the gap to 20 (diamond) reduces the error to 1% for the most concentrated
array φ¯ 0.6.

Sangani & Acrivos (1982) also obtained a dilute approximation to the multipole
expansion that can be expressed analytically as

k
!
¯

4π

ln (φ−"/#)®0.738φ®0.887φ#2.038φ$O(φ%)
. (10)

Equation (10) is plotted as the first solid line in figure 2. Despite the small radius of the
cylinders (a¯ 2.7 and 0.61) used at the smaller volume fractions, the agreement
between this dilute asymptote and the data is excellent. This good agreement may be
rationalized as follows. The analytical solution for very low volume fractions can be
obtained from a singular perturbation analysis in which the inner solution corresponds
to flow around a single cylinder and the outer solution corresponds to a periodic array
of point forces. In the computations, we have adjusted the effective hydrodynamic
radius, a, to obtain the appropriate inner solution. The outer solution is insensitive to
the shape of the particle.

3.1.2. Theory for concentrated arrays

When the volume fraction is near the close packing limit, the requirement that all of
the fluid flow through the small gaps between neighbouring particles leads to very high
velocities and pressure drops in these gaps. The pressure drop across each gap may be
derived by performing lubrication analyses on (6)–(9). Sangani & Acrivos (1982) solved
the Stokes flow equations (6) and (9) to determine the leading contribution to the
pressure drop at low Reynolds number. We will denote the gap thickness as aε, where
ε¯ 1®(4φ}π)"/# for a simple square array. Since all the fluid must flow through the
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small gap, the characteristic value of the velocity component parallel to the gap, u
x
, is

U}ε. Here, x and y are Cartesian coordinates oriented along the principle axes of the
square array. The width of the gap in the y-direction is aε while its length in the x-
direction is aε"/#. The magnitude of the pressure gradient at zero Reynolds number is
obtained by balancing the pressure gradient, ¥p}¥x¯O(p}aε"/#), with the viscous
stress, µ¥#u

x
}¥y#¯O(µU}a#ε$). In this way, we find that ∆p¯O(µU}aε&/#). To obtain

the first effects of inertia on this pressure drop, we have solved equations (7), (8), and
(9). The inertial term ρu[¡u¯O(ρU #}aε&/#) is O(Re ε"/#) smaller than the viscous
stress. The Reynolds number measures the relative importance of inertia and viscosity
in the region outside the gap. Within the gap, the importance of inertia is increased by
a factor of ε−" due to the large velocity but is decreased by the same factor due to the
small length scale. These two effects cancel and it is finally the nearly unidirectional
nature of the flow that causes the inertial effects to be small like Re ε"/#. As mentioned
earlier, the first correction to the pressure field due to inertia is an even function of
position and we must go to the O(Re# ε) problem to obtain a change in the net pressure
drop. The pressure drop across the gap is

∆p
x
¯

µU
x

aε&/# 0
9π

4(2)"/#


39(2)"/#π

26950
Re#

x
ε1 , (11)

where U
x
is the component of the mean velocity in the x-direction and Re

x
¯ 2aρU

x
}µ.

An analogous equation may be written for the pressure drop across gaps oriented in
the y-direction. For the case of on-axis flow considered in figures 2 and 3, U

x
¯U and

U
y
¯ 0. The leading contribution to the force on the particle comes from the difference

in pressure ∆p
x

acting over the length, 2a, of the cylinder’s projection into the y-
direction. Thus,

k
!
¯

9π

2$/#
ε−&/# (12)

and k
#
¯

39(2)"/#π

13475
ε−$/#. (13)

These predictions of the lubrication analysis are plotted as the lines at high volume
fractions in figures 2 and 3, respectively.

As mentioned earlier, the value of k
!
must be independent of the orientation of the

flow relative to the primary axes of the array as a result of the linearity of Stokes flow.
The inertial corrections to the relationship between the drag and the mean velocity
need not have this isotropy and the drag force need not be aligned with the direction
of the mean velocity at higher Reynolds numbers. Using (11), it is easy to show that
the O(Re#) correction to the magnitude of the force, i.e. k

#
, is independent of the angle

between the mean velocity and the x-axis, θ. However, the angle that the drag force
makes with the x-axis, θ

F
, is different from θ and is given by

tan θ¯ tan θ
F
(1βRe#) for Re' 1, (14)

where β¯
52

40425
ε cos (2θ

F
), (15)

Equation (15) indicates that the mean velocity in a highly concentrated array will be
closer to a 45° angle away from each of the axes of the array than is the drag force or
pressure gradient. One can rationalize this result by noting that there is a nonlinear
increase in the pressure drop through the gap with increasing velocity. Thus, a greater
incremental increase in the flow rate is obtained for the same increment of pressure
drop in the set of gaps receiving the smaller fraction of the flow.
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3.1.3. Theory for dilute arrays

Theoretical results for dilute arrays can be obtained through a singular perturbation
analysis. The unit cell is divided into an inner region within an O(a) distance from the
particle and an outer region with a characteristic length scale of the interparticle
spacing, H¯ a(π}φ)"/#. Hasimoto (1959) performed such an analysis under conditions
of creeping flow in which inertia could be neglected in both the outer and inner regions.
In the outer region, the finite size of the cylinders could be neglected and they were
treated as point forces. In the inner region, the velocity could be approximated as that
around a single cylinder. Matching these solutions provided a relationship between the
mean velocity and the drag on the cylinder that corresponds to (10) if one neglects
terms of O(φ) and higher.

As the flow rate is increased beyond the creeping flow regime, inertial effects first
become important in the outer region because of its larger characteristic length. A
simple theory can be obtained if one approximates the equations of motion in the outer
region as Oseen’s equations of motion. A more accurate prediction of the first effects
of inertia can be obtained using the perturbation expansion (6)–(9) of the full
Navier–Stokes equations. We will now discuss these two theories in turn.

The velocity disturbance produced by the cylinders at low Reynolds numbers is
O(1}ln (H}a)) smaller than the mean velocity throughout the outer region. Thus, with
logarithmically small errors, one can approximate the momentum equation in the
outer region by the Oseen equation:

ρU[¡u®µ~#u¡p¯F 3
N

δ(x®x
N
), (16)

where x
N

is the position of the Nth particle and the summation is over all the particles
in the array. The linearity of the Oseen equation greatly simplifies the subsequent
analysis. However, we shall see that the results are only accurate at exceedingly small
volume fractions because of the O(1}ln (1}φ)) errors. A solution of (16) together with
the mass conservation equation (5) may be obtained using Fourier transforms:

u¯U
1

H #
3
q1

!

F[(I®qq/q#)

µ(2πq)#2πiρq[U
e#πiq[x , (17)

where the summation is carried out over all the vectors of the reciprocal lattice. The
fluid velocity may be written as

u¯Uu
S
u

I
, (18)

where u
S

is the velocity disturbance caused by the particles in the absence of inertia and
u
I
is the extra disturbance due to the inertial effects. Hasimoto showed that the Stokes

flow velocity disturbance obtained from the outer solution behaves as

u
S
¯

F

4πµ
[0I[ln (H}x)®1.3105]

xx

x#

®
I

21 (19)

as one approaches one of the cylinders, i.e. x'H. The inertial velocity disturbance,
which is obtained by subtracting the Fourier-space representation of the Stokes flow
velocity field from (17), may be expressed as

u
I
(x¯ 0)¯®A[F, (20)

where A¯ 3
q1

!

4πRe#
H
(I®QQ) (V[Q)#

(2πq)%Re#
H
(2πq[V )#

(21)
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F 4. The Oseen theory for on-axis flows in dilute square arrays. The xx-component of the tensor
A appearing in the relationship (23) between the drag and the mean velocity is plotted as a function
of Re

H
. The dashed line indicates the low-Re

H
asymptote, A

xx
¯ 2.90¬10−$Re#

H
.

and we have omitted an imaginary term that is odd and sums to zero. In (21), Q¯q}q,
V¯U}U, q has been scaled with H−" and Re

H
¯ ρUH}µ is the Reynolds number

based on the lattice spacing.
The inner solution obtained by solving Stokes flow around a single cylinder is

u
in

(x( a)¯
F

4πµ
[0I ln (a}x)

xx

x#

®
I

21 . (22)

A relationship between the mean velocity and the force can be obtained by matching
the outer solution (18), (19), and (20) with the inner solution (22) to obtain

F[(bI®A)¯®4πµU, (23)

where b¯ "

#
ln (1}φ)®0.738 and A is given by (21).

Equations (23) and (21) may be applied to cases in which the Reynolds number Re
H

based on the lattice spacing is O(1) provided that the Reynolds number, Re, based on
the particle diameter is small. For the case of flow parallel to the primary axis of
symmetry (x-axis), the velocity and force are in the x-direction and one need only
consider the xx-component of the tensor A. A

xx
is plotted as a function of Re

H
in figure

4. Initially, A
xx

and therefore the force increase quadratically with Re
H
. However,

slower growth is obtained at Re
H

" 5.
In the limit of small Re

H
, one can neglect the O(Re#

H
) term in the denominator of (21)

and perform the sum to determine the coefficient k
#

defined in (3) to be

k
#
¯

4πV[A
!
[V

b#

, (24)

where A
!
¯ 3

q1
!

4π(V[K)#(I®QQ)

(2πq)%
. (25)

For flow parallel to the primary axis of the array

k
#
¯

0.0286

φb#

. (26)
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F 5. k
#
φ is plotted as a function of [ln (1}φ)]−" in order to compare the theories based on Oseen’s

equations of motion ((26), dashed line) and the Navier–Stokes equations ((32), solid line) with the
computational results (symbols). The different symbols are as defined for figure 2.

The Oseen theory described above has O(1}ln (1}φ)) relative errors resulting from
the linearization of the inertial term in the momentum equation. A more accurate
theoretical prediction of the first effects of inertia on the drag can be obtained by
solving the full Navier–Stokes equations in the outer region through an iterative
procedure. The zero-order term in this expansion is obtained by solving (6) with an
array of point forces on the right-hand side. The result for the Fourier transform of u

!
is

uW
!
(q)¯F[J(q) for q1 0 (27)

and uW
!
¯ 0 for q¯ 0. Here, J is the Fourier transform of the Oseen tensor and is given

by

J¯
I®QQ

µ(2πq)#
. (28)

Solving the first- and second-order momentum equations after Fourier transforming
yields

uW
"
(q)¯®2πiq[VJ(q)[uW

!
(q)®3

q«

uW
!
(q®q«)[2πiq«J(q)[uW

!
(q«), (29)

uW
#
(q)¯®2πiq[VJ(q)[uW

"
(q)®3

q«

[uW
"
(q®q«)[2πiq«J(q)[uW

!
(q«)

uW
!
(q®q«)[2πq«J(q)[uW

"
(q«)]. (30)

This outer solution may be matched with the Stokes flow inner solution in a manner
analogous to that outlined above for the Oseen theory. The evaluation of u

#
(x¯ 0) by

inversion of the Fourier transform requires a six-dimensional summation and is
therefore computationally intensive. In order to accelerate the convergence of the
summation, we noted that the value of the velocity obtained by limiting the sum to
rq

x
r! q

m
and rq

y
r! q

m
could be written as

uW
#x

(q
m
)¯ u

#x
(¢)B}q#

m
. (31)
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F 6. The coefficient k
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defined in (3) is plotted as a function of F
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; k

#
is normalized by its value

at F
y
}F

x
¯ 0 in order to emphasize the variation of the inertially induced drag with the orientation of

the force. The computational results are indicated by D (φ¯ 0.052), * (φ¯ 0.099), ^ (φ¯ 0.20),
and V (φ¯ 0.40). The solid line is the Oseen theory for dilute arrays and the dashed line the
lubrication analysis for dense arrays.

By performing the sum for several values of q
m

it was then possible to extrapolate to
q
m

¯¢. The result for the coefficient k
#

is

k
#
φ¯

0.0286

b#

®
0.0348

b$


0.0146

b%

. (32)

Equation (32) is plotted as the solid line at low volume fractions in figure 3. To
obtain a better view of the comparison between the dilute theories and the
computational results, we have plotted k

#
φ as a function of [ln (1}φ)]−" in figure 5. The

theoretical results become accurate only for highly rarefied arrays. The computational
results are in fair agreement with the Navier–Stokes theory for [ln (1}φ)]−"! 0.2,
corresponding to volume fractions less than about 0.005. The Oseen theory is only
accurate at extremely small φ ; it deviates from the Navier–Stokes theory by 30% even
at [ln (1}φ)]−"¯ 0.1 or φ¯ 5¬10−&.

3.1.4. Numerical results for off-axis flows

Because the fluid inertia introduces nonlinearities into the equations of motion, the
effect of inertia on the drag (as measured by k

#
, for example) is not independent of the

orientation of the flow relative to the axes of the array. Figure 6 is a plot of k
#

normalized by its value for on-axis flow as a function of the ratio of the components
of the drag (or pressure drop). As noted earlier, the lubrication theory (dashed line)
predicts that k

#
is independent of F

y
}F

x
and this prediction is confirmed by the

computational results for φ¯ 0.40 (diamonds). As the volume fraction is decreased to
φ¯ 0.20 (triangles), k

#
begins to increase with F

y
}F

x
indicating that the drag is larger

for off-axis flows. In the dilute arrays with φ¯ 0.099 (squares) and φ¯ 0.052 (circles),
the variation of the drag reduces to that predicted by the Oseen theory (solid line). It
is interesting to note that the Oseen theory provides excellent predictions of the angular
variation of the drag for arrays as concentrated as φ¯ 0.1, whereas it does not
accurately predict the absolute value of the drag until the volume fraction is much
smaller (φE 10−%).



44 D. L. Koch and A. J. C. Ladd

3

0.4

4

0 0.6 0.8 1.0

Fy/Fx

0.2

2

1

β

(×10–4)

F 7. The coefficient β defined in (15) is plotted as a function of the ratio F
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components of the force: V, results of computations with φ¯ 0.403; solid line is lubrication
theory (15).
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F 8. The coefficient β defined in (15) is plotted as a function of F
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x
. The symbols are

computational results for φ¯ 0.052 (D), 0.099 (*), and 0.20 (^). The solid and dashed lines are the
Oseen theory for φ¯ 0.052 and 0.099, respectively.

At zero Reynolds number, the direction of the mean flow coincides with the direction
of the drag (or pressure gradient) as a result of the principle of linear superposition. As
noted in our discussion of the lubrication analysis, inertial effects lead to a difference
between the angles that the flow and the force make with the axis of the array as
expressed in (14). The lubrication analysis predicts a positive value of the coefficient β,
indicating that the flow makes a larger angle with the primary axis of the array than
does the force. Thus, the flow shifts in such a way as to make better use of the channels
oriented in the y-direction as well as those oriented in the x-direction. The predictions
of the lubrication analysis are compared with the numerical simulations for φ¯ 0.40
in figure 7.

The value of β is negative at smaller values of φ as shown in figure 8, indicating that
the mean velocity is more nearly aligned with the symmetry axis than is the pressure
gradient. This may result from the fact that one cylinder can more effectively draft in
the wake of its nearest neighbour when the flow is aligned with the primary axis of
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F 9. The drag for on-axis flow in a square array of cylinders with φ¯ 0.20 is plotted as a
function of the Reynolds number: D, E, ^, _, are our simulations with a¯ 4.8, 9.8, 14.8, and 19.8,
respectively ; *, finite element results of Edwards et al. (1990) ; ¬, finite element solutions of
Ghaddar (1995).

symmetry. A theoretical prediction for β based on the Oseen theory can be obtained
easily by solving (23) and it is given by

β¯
π

4φb 0
(A

!
[V )

x

V
x

®
(A

!
[V )

y

V
y

1 . (33)

The theoretical results for φ¯ 0.052 and 0.099 are plotted as the solid and dashed lines
in figure 8. The theory predicts the correct qualitative trends, indicating that β is
negative and that it becomes increasingly negative as the pressure gradients becomes
aligned with the symmetry axis and as the volume fraction is decreased. However, the
quantitative agreement is not good at these moderately small values of φ.

3.2. Moderate Reynolds numbers

The previous subsection emphasized the relationship between the mean velocity and
drag at asymptotically low Reynolds numbers, for which theoretical analysis is
possible. In this section, the lattice-Boltzmann computations will be used to explore
this relationship at higher Reynolds numbers. Figure 9 gives the drag as a function of
the Reynolds number for on-axis flow in a simple square array with φ¯ 0.2. As the
Reynolds number is increased from 0 to 180, F}(µU ) exhibits a modest increase of
about 40%. The open and filled circles and the open and filled triangles indicate lattice-
Boltzmann calculations with 10, 20, 30 and 40 grid spacings across the gap between
particles, respectively. The squares are a finite element calculation by Edwards et al.
(1990). There is a good agreement between the lattice-Boltzmann and finite element
simulations for Re! 100. At higher Re, the flow becomes unsteady in our simulations
whereas Edwards et al.’s computation sought only steady solutions. The drag versus
Reynolds number plot exhibits an increase in slope after the onset of unsteadiness that
is not seen in Edwards et al.’s solution. However, it has been observed in the finite
element solutions of Ghaddar (¬) which solve the time-dependent Navier–Stokes
equations. At Re¯ 0, the computation results are close to the prediction of F}µU¯
51.5 obtained from a multipole solution of the Stokes equations (Sangani & Acrivos
1982). Figure 9 validates the lattice-Boltzmann code at finite Re by indicating that it
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F 10. The drag for on-axis flow in a square array of cylinders with φ¯ 0.40 is plotted as a
function of the Reynolds number: E, our simulations with a¯ 25.8; *, steady-state finite element
simulations (Edwards et al. 1990) ; ¬, finite element solutions of the tim-dependent Navier–Stokes
equations (Ghaddar 1995) ; U, at Re¯ 0 is the multipole solution of Sangani & Acrivos (1982).
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F 11. The drag on a cylinder, F}µU, in a square array with φ¯ 0.20 is plotted as a function of
Reynolds number for F

y
}F

x
¯ 0 (D), 0.2 (*), 0.4 (^), 0.6 (x), 0.8 (V), and 1 (¬). The radius is

a¯ 9.8. In cases where the flow is unsteady F and U are the time-averaged force and mean velocity.

reproduces results obtained by other numerical methods and that the results are
insensitive to the ratio of sphere radius to grid spacing, a, for sufficiently large values
of a.

Figure 10 presents results for on-axis flow with φ¯ 0±40. Again the agreement with
both finite element solutions is good for Re! 150. At larger Re, the flow becomes
unsteady and our lattice-Boltzmann simulations are in good agreement with Ghaddar’s
finite element solution of the time-dependent Navier–Stokes equations. At Re¯ 0, the
lattice-Boltzmann drag, F}µU¯ 223, is comparable with that obtained from the
multipole solution by Sangani & Acrivos (1982), i.e. F}µU¯ 218.

The nature of the fluid flow and the pressure drop}flow rate relationship in a square
array at finite Re is strongly dependent on the angle that the pressure gradient makes
with the axis of symmetry for the array. For example, figure 11 presents F}µU as a
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(a) (b)

F 12. Streamlines for flow parallel to the axis of symmetry of a square array with φ¯ 0.20
at Re¯ 58.2 (a) and 166.6 (b). The flow at Re¯ 166.6 is unsteady with St¯ 0.64, ∆θ¯ 1.5, and
∆U}U¯ 2.1¬10−%.

F 13. Streamlines for flow at a 45° angle to the primary axis of a square array with
φ¯ 0.20 and Re¯ 61.5. The flow is unsteady with St¯ 0.74, ∆θ¯ 2.3, and ∆U}U¯ 2.1¬10−$.

function of the Reynolds number for several orientations of the pressure gradient. As
noted earlier, the drag for on-axis flow (circles) rises only modestly with Re. In
contrast, the drag is a highly nonlinear function of the flow rate when the pressure
gradient and mean velocity are directed at 45° to the axis of the array (¬)†. The origin
of these vastly different behaviours may be discerned by examining the streamlines at
ReE 60 (figures 12a and 13). For on-axis flow (figure 12a) the recirculating wake

† Our drag for F
y
}F

x
¯ 1 and Re¯ 60, F}µU¯ 143, is considerably larger than the value, F}µU

¯ 91, reported by Edwards et al. (1990). This discrepancy may be attributed to the fact that Edwards
et al.’s results are for steady flow, whereas we obtain an unsteady solution at this Re. To validate our
code for off-axis flow, F

y
}F

x
¯ 1, we compared our result for Re¯ 26.6, F}µU¯ 92.1, with a spectral

solution (Yusof 1996) which gave F}µU¯ 91.8 at Re¯ 26.7.
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F 14. The angle that the mean velocity makes with the x-axis is plotted as a function of
Reynolds number for a square array with φ¯ 0.20 and a¯ 9.8. In cases where the flow is unsteady,
the time average of θ is given. The symbols are as defined in figure 11.

behind one cylinder is able to bridge the gap to the next cylinder. Since the pressure
variation within this wake is small and the wake comprises nearly equal parts of the
front and rear of the cylinder, the form drag is nearly zero. Thus, the drag for on-axis
flow is primarily a viscous stress arising from the non-recirculating flow and this drag
is nearly proportional to µU. When the pressure gradient is at the 45° orientation, the
wake behind the cylinder becomes unsteady before it is able to bridge the larger (o2H )
distance to the next cylinder. At ReE 60, the flow is unsteady with vortices shed
alternately from either side of the cylinder as may be seen in figure 13. This leads to
an asymmetric pressure distribution and a substantial form drag, so that the drag per
unit length is nearly proportional to ρU #a.

At zero Reynolds number, the mean velocity of the fluid is always parallel to the
drag. However, at higher Re, the mean velocity can have a different orientation from
the drag when F

y
}F

x
is intermediate between 0 and 1. This is illustrated in figure 14

where the angle θ that the mean velocity makes with the x-axis is plotted as a function
of Reynolds number for F

y
}F

x
¯ 0.2 (squares), 0.4 (upward triangles), 0.6 (downward

triangles), and 0.8 (diamonds). For the smaller values of the ratio F
y
}F

x
, the flow angle

θ shows a very slight initial increase with Re and then decreases dramatically, so that
the mean flow is nearly aligned with the x-axis for Re" 100. This flow alignment
allows a wake spanning the distance between two neighbouring cylinders to form. This
may be seen in figure 15 which shows the streamlines for F

y
}F

x
¯ 0.4 and Re¯ 60.6.

Although θ is only 4.6°, the slight asymmetry of the wake and the larger value of the
x-velocity at y-positions smaller than the cylinder’s centre produce a sufficient value of
F
y
to maintain the angle of the force with the x-axis at θ

F
¯ 21.8°. By comparing figures

11 and 14, it can be seen that the force increases with Re initially for all the off-axis
flows. However, for F

y
}F

x
¯ 0.2, 0.4 and 0.6, the non-dimensional force achieves a

nearly steady value after the flow becomes nearly aligned with the x-axis (θU 0).
The behaviour for F

y
}F

x
¯ 0.8 is distinct from that at the other forcing orientations.

The flow angle θ initially increases and decreases for Re! 50 in a manner similar to
the other angles. However, at Re¯ 50, the flow becomes unsteady. As Re is further
increased, the mean flow becomes increasingly aligned with the 45° direction.

Thus, at high Reynolds numbers, it is very difficult to drive a fluid flow through a
square array at any orientation that is not parallel to one of the primary axes of
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F 15. Streamlines for a pressure drop at an acute angle to the symmetry axis of a square array
with φ¯ 0.20, F

y
}F

x
¯ 0.4, Re¯ 60.6 and the angle between the flow and the primary axis

is θ¯ 4.6°.

symmetry. There is a small domain of attraction for flows at a 45° angle to the primary
axis, but most orientations of the pressure gradient lead to flows nearly aligned with
one of the primary axes.

The flow past an isolated cylinder becomes unsteady at Re¯ 49 and the period of
the oscillation may be characterized by a Strouhal number, St¯ 2a}(UT ), where T is
the period of oscillation (Williamson 1996). The Strouhal number increases slowly with
Re from a value of 0.12 at the onset of unsteady flow to 0.18 at Re¯ 160. We may
therefore expect to observe unsteady flows in the range of Reynolds numbers studied
here. In a periodic array, the transition to unsteady flow and the nature of the
oscillations are strongly dependent on the orientation of the force. The Strouhal
number and amplitude of the oscillations are given in table 1 for the cases in which
oscillatory flow was observed. For F

y
}F

x
¯ 1 and 0.8 we observed a transition at

Reynolds numbers quite close to the critical Re for an isolated cylinder, i.e. ReE 46
and 50, respectively. However, the Strouhal numbers at onset, St¯ 0.74 for F

y
}F

x
¯ 1

and St¯ 0.70 for F
y
}F

x
¯ 0.8, are considerably larger than for the unbounded flow.

The higher frequency of oscillation in the array of cylinders may be attributed to the
confinement of the flow by neighbouring cylinders leading to smaller vortices which are
shed more frequently.

At the intermediate drag orientations F
y
}F

x
¯ 0.6, 0.4 and 0.2, we did not observe

any unsteady flows. However, when the pressure gradient is aligned with the primary
axis of symmetry, the flow becomes unsteady at a relatively large Reynolds number,
ReE 125.† The amplitude of the oscillations for on-axis flow is quite small and the
oscillation simply consists of a wave passing along the wake. This leads to a small form
drag that accounts for the increase in the slope of the drag versus Re plot in figure 9.

† Ghaddar reported a transition to unsteady flow occurring between Re¯ 138 and 150. However,
for a¯ 9.8, we obtained steady flow at Re¯ 123.6 and unsteady at Re¯ 128.2, and upon refining the
grid (using a¯ 14.8) the transition was in the range Re¯ 120.5–125.3. The amplitude of the
oscillation is very small near onset. Also, if one starts from zero velocity, it takes a long time for
numerical errors to break the symmetry and initiate the oscillation. For this reason we introduced
some asymmetry in the initial conditions.
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F
y
}F

x
Re F}µU St θ ∆θ ∆U}U

1 45.3 126.3 Steady 45 — —
47.6 128.7 0.74 45 1.3 7.3¬10−%

51.9 133.8 0.74 45 2.0 1.1¬10−$

56.0 138.5 0.74 45 2.4 1.5¬10−$

60.0 143.0 0.74 45 2.8 2.0¬10−$

65.6 149.4 0.74 45 3.1 2.7¬10−$

76.1 161.1 0.74 45 3.6 4.9¬10−$

105.9 192.7 0.75 45 4.3 6.1¬10−$

119.0 206.0 0.75 45 4.5 6.9¬10−$

133.4 220.3 0.76 45 4.6 7.7¬10−$

146.8 233.6 0.76 45 4.7 8.6¬10−$

161.2 248.3 0.77 45 4.8 9.5¬10−$

0.8 49.0 159.2 Steady — — —
52.5 165.2 0.71 37.0 1.2 3.2¬10−$

56.0 170.2 0.72 37.3 1.8 4.4¬10−$

59.4 175.1 0.72 37.5 2.2 5.0¬10−$

62.6 180.0 0.72 37.6 2.5 6.2¬10−$

77.2 202.1 0.73 38.2 3.3 7.7¬10−$

92.7 224.5 0.74 38.9 3.6 8.2¬10−$

109.2 246.1 0.77 39.7 3.8 8.0¬10−$

122.8 261.1 0.77 40.4 3.9 7.7¬10−$

138.0 276.4 0.77 41.2 4.0 9.6¬10−$

0 123.6 69.4 Steady 0 — —
128.2 70.1 0.63 0 0.56 2.3¬10−&

137.3 71.4 0.63 0 0.89 5.5¬10−&

146.2 72.6 0.64 0 1.1 1.0¬10−%

154.9 73.8 0.64 0 1.3 1.5¬10−%

167.8 75.4 0.64 0 1.4 2.1¬10−%

T 1. Data for unsteady flows in square arrays with φ¯ 0.2. The values of Re, F}µU, and θ are
time averaged. ∆θ is the amplitude of the oscillations in θ, ∆U is the amplitude of the oscillation of
the spatially averaged velocity, and U is the spatially and temporally averaged velocity.

To test the accuracy of the unsteady flow solutions, we repeated the highest
Reynolds number flow with a 45° orientation using a larger cylinder, a¯ 14.8. This
resulted in only a 2% change in the Strouhal number. We also performed a simulation
with four periodically arranged cylinders in the unit cell. The flow did not exhibit
oscillations with a spatial wavelength twice that of the array. Bittleston (1986) observed
variations in the flow field in different unit cells in physical experiments at sufficiently
high Reynolds numbers. However, it is not clear whether the variations in the
experiments resulted because the flow was not fully developed; the array was only ten
cylinders long and eight cylinders wide.

The variation of the drag with Reynolds number for off-axis flows in a more
concentrated periodic array (φ¯ 0.40) is plotted in figure 16. The angle between the
mean velocity and the primary axis of the array is plotted in figure 17. As in the case
of the more dilute array (cf. figure 14), the drag increases much more rapidly when
F
y
}F

x
¯ 1 or 0.8 than when the pressure gradient is along the axis of symmetry

(F
y
}F

x
¯ 0). However, the behaviour at intermediate orientations is different from that

observed previously. At φ¯ 0.20, the drag at the intermediate orientations (F
y
}F

x
¯

0.2, 0.4, and 0.6) levelled off as the Reynolds number was increased and the mean
velocity became increasingly aligned with the primary axis (cf. figure 12). In the more
concentrated array, the flow angle θ increases rapidly as Re is increased from Re¯ 0.



Flows through periodic and random arrays of cylinders 51

800

50 100 150

Re

600

400

200

0

F
µU

200

F 16. The drag on a cylinder, F}µU, in a square array with φ¯ 0.40 is plotted as a function of
Reynolds number for F

y
}F

x
¯ 0 (D), 0.2 (*), 0.4 (^), 0.6 (x), 0.8 (V), and 1 (¬). The radius is

a¯ 25.8. In cases where the flow is unsteady F and U are the time-averaged force and mean velocity.
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F 17. The angle that the mean velocity makes with the x-axis is plotted as a function of
Reynolds number for a square array with φ¯ 0.40 and a¯ 25.8. In cases where the flow is unsteady,
the time average of θ is given. The symbols are as defined in figure 16.

At F
y
}F

x
¯ 0.2, the angle passes through a maximum and the flow eventually begins to

align with the symmetry axis. As a result, the drag for this case finally begins to level
off at ReE 150. At F

y
}F

x
¯ 0.4, θ first increases with Re, then passes through a

maximum and begins to decrease. However, at ReE 100 the flow becomes unsteady
and begins to oscillate close to the 45° orientation. For F

y
}F

x
¯ 0.4, 0.6, and 0.8,

θU 45° at high Reynolds numbers. At these orientations, the drag is uniformly higher
than that for F

y
}F

x
¯ 1, i.e. θ

F
¯ 45°.

The dynamics of the flows observed in the array with φ¯ 0.40 and summarized in
table 2 are more complex than those in the more dilute array. When the forcing is along
the axis of symmetry, we observe a simple transition to time-oscillatory flow at
ReE 140. For F

y
}F

x
¯ 0.2, the flow remains steady for all the Reynolds numbers

studied. However, when the forcing ratio is further increased to F
y
}F

x
¯ 0.4 and 0.6, the

flow undergoes a transition to a simple oscillation at ReE 100 and 60, respectively.
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F
y
}F

x
Re Osc. F}µU St θ ∆θ ∆U}U

1 53.6 S 320.9 — — — —
62.1 P1 346.2 1.40 45 2.6 7.6¬10−%

178.7 P1 721.9 1.40 45 5.3 1.0¬10−#

179.5 P17 730.6 0.0831 45 7.7 2.6¬10−#

180.9 P19 761.9 0.0748 45 8.1 2.9¬10−#

182.3 P21 768.3 0.0680 45 8.4 3.1¬10−#

192.6 P39 781.4 0.0374 45 9.1 4.5¬10−#

0.8 49.2 S 327.7 — 42.8 — —
60.2 P1 357.1 1.28 42.8 1.6 1.3¬10−$

148.5 P1 666.0 1.38 43.2 5.3 8.3¬10−$

154.2 P2 697.1 0.709 42.4 7.8 1.9¬10−#

180.0 P1 764.4 1.40 43.4 5.1 1.1¬10−#

183.1 P13 775.0 0.108 43.4 5.9 1.6¬10−#

188.1 P17 800.1 0.0814 43.2 7.6 3.1¬10−#

194.2 C 830.3 — 42.4 — —

0.6 57.6 S 373.1 — 39.8 — —
74.3 P1 434.1 1.31 39.8 3.8 4.7¬10−$

132.2 P1 650.5 1.37 41.0 5.3 9.1¬10−$

141.5 P2 698.6 0.700 39.5 7.6 3.4¬10−#

148.0 P4 726.4 0.352 39.3 8.4 4.3¬10−#

149.5 P8 733.4 0.176 39.2 8.6 4.9¬10−#

150.9 P16 740.9 0.0884 39.1 8.8 5.3¬10−#

152.6 C — — — — —

0.4 97.3 S 552.4 — 31.8 — —
107.5 P1 600.1 1.37 36.5 4.6 1.0¬10−#

127.0 P1 677.2 1.38 37.4 4.9 1.1¬10−#

136.0 P2 711.4 0.689 37.6 5.3 1.5¬10−#

149.7 P4 789.9 0.355 35.8 6.7 3.9¬10−#

155.6 C — — — — —

0 133.3 S 322.5 — 0 — —
154.7 P1 347.5 1.19 0 1.6 2.7¬10−$

T 2. Data for time oscillatory and chaotic flows in square arrays with φ¯ 0.4. S denote steady;
P1 a simple oscillation; P17, P19 etc. oscillations with 17, 19 etc. times the original period, and C
chaotic.

This is followed by a sequence of period-doubling transitions leading eventually to
chaotic fluctuations in the mean velocity at Reynolds numbers larger than about 155.
Because of the asymmetry of the forcing, vortices are formed only on one side of the
cylinder (the lower right-hand side in figure 18). These vortices then translate along the
right-hand side of the cylinder and detach from the upper right corner. The period-
doubling transition seems to occur at approximately the same Reynolds number at
which a second vortex begins to form before the previous vortex has detached; the
interaction of these vortices may result in the transition.

When the forcing is closer to the 45° orientation, i.e. F
y
}F

x
¯ 0.8 and 1, the flow

becomes more symmetric about the diagonal and vortices can be formed from both
sides of the diagonal. In addition to this change in the flow geometry, there is a change
in the dynamic transitions. At F

y
}F

z
¯ 1, the original simple oscillation is replaced by

oscillations with 17, 19, 21, 23, etc. times the original period as the Reynolds number
is increased. An example of temporal oscillations of θ is shown in figure 19 for the P17
oscillation. The angle shows peaks of varying amplitude. The flow oscillates to
alternating sides of the diagonal with a period equal to the original primary period of
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F 18. Streamlines for flow through a square array with φ¯ 0.40, F
y
}F

x
¯ 0.4, and Re¯ 142.6

(corresponding to the P2 oscillation). At the instant at which these streamlines are taken, one vortex
has reached the rear (top right) of the cylinder and a second is forming along the lower right-hand
side.

55
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40

F 19. The temporal variation of the angle of the mean flow θ is plotted for the P17
oscillation at Re¯ 186.8 for an array with φ¯ 0.40 and F

y
}F

x
¯ 1.

oscillation. However, approximately every fourth extremum of θ is larger than the
others. Over the long P17 period, this large swing in the flow angle alternates between
the two sides of the diagonal. For forcing along the 45° axis, no transition to chaotic
motion has been observed. However, for F

y
}F

x
¯ 0.8, the flow becomes unsteady,

passes through a period-doubling transition, returns to the P1 mode, and then passes
through P13, P15, and P17 modes before becoming chaotic at ReE 190.

As in the case of the more dilute arrays, we tested the convergence of the
computations by mesh refinement at the highest Re considered. We also confirmed that
no spatial modes with wavelengths longer than the intercylinder spacing were observed
when four cylinders were included in a unit cell. The flow past a single cylinder becomes
three-dimensional at a Reynolds number of 195 (Williamson 1996). All of the
simulations performed here for arrays of cylinders had Reynolds numbers smaller than
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F 20. The drag for on-axis flow in dilute arrays ; V, x, ^, *, correspond to φ¯ 0.1, 0.05,
0.025, and 0.0125, respectively. The cylinder radius was 4.8. The line is an empirical result (Clift,
Grace & Weber 1978) for an isolated cylinder.

this critical value. However, to test for the possibility of three-dimensional flows, we
performed a simulation which relaxed the assumption of two-dimensional symmetry.
This test was performed at the highest Reynolds number, Re¯ 172.6, for which
calculations were conducted at φ¯ 0.40 and F

y
}F

x
¯ 0.4. Periodic boundary conditions

were imposed in the direction parallel to the cylinder axis with a cell length equal to
four times the cylinder diameter. This is large enough to include a three-dimensional
mode of the type observed for the single cylinder (Williamson 1996). The simulation
was conducted for a time 11 (2a}U ), which is longer than the time required for the
onset of unsteady two-dimensional flows. It was determined that the chaotically
fluctuating flow remained two-dimensional.

The relatively modest increases in the drag with Reynolds number observed for on-
axis flows in square arrays result from the drafting of each cylinder in the wake of its
upstream neighbour. It is therefore interesting to determine how dilute an array can
become before this drafting begins to lose its effectiveness. The drag in arrays with
φ¯ 0.0125, 0.025, 0.05, and 0.1 are plotted as a function of Reynolds number in figure
20. In these dilute arrays, drafting leads to a drag that is even smaller than that on an
isolated cylinder (line) at the higher Reynolds numbers. The velocity field becomes
unsteady at a Reynolds number that decreases with increasing dilution. The Reynolds
number for the onset of unsteadiness is in the range (57.0, 71.9) for φ¯ 0.05, (26.4,
36.0) for φ¯ 0.025, and (10.7, 19.4) for φ¯ 0.0125. The Strouhal number at the onset
of oscillations was StE 1.0φ"/#, consistent with computations of Bittleston (1986).
These two observations suggest that the cylinder spacing H (instead of the particle
diameter 2a) is the length that characterizes the dynamics of dilute arrays. The onset
Reynolds and Strouhal numbers based on H would be approximately constant at small
volume fractions. At higher Reynolds numbers, Re¯ (62.0, 70.5) at φ¯ 0.025 and
Re¯ (45.4, 53.2) at φ¯ 0.0125, the symmetry of the flow is broken and the time-
average flow field is oriented off the axis of symmetry even though the pressure gradient
coincides with this axis. When this occurs, the drag begins to increase more rapidly.
The drag in the φ¯ 0.025 array (upward triangles) begins to approach that in the more
concentrated φ¯ 0.05 array (downward triangles). The increase in the most dilute
array (φ¯ 0.0125 squares) is even more dramatic. The drag in this very dilute array
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φ N N
c

F}U
(³standard error)

0.20 4 100 45.1³2.3
16 20 42.0³4.2
32 20 39.6³2.8
64 10 43.7³1.5

128 5 40.1³3.0
0.40 16 5 283³13

32 5 301³35
64 5 282³32

T 3. The mean drag in random arrays at Re¯ 0 for different values of the number of
particles N in the unit cell.

a Re F}µU

13.8 0.0493 291.8
— 45.2 508.5

27.8 0.0468 307.2
— 43.6 527.4

T 4. The mean drag in random arrays with N¯ 4 and N
c
¯ 5 is given for two geometrically

similar sets of configurations with different degrees of grid resolution.

grows until it is larger than even the φ¯ 0.1 array (diamonds) and it begins to
approach the result for an isolated cylinder (line).

4. Random arrays

4.1. Computational considerations

Random arrays of aligned cylinders can be simulated by including a large number, N,
of cylinders within the unit cell. The positions of the centres of the cylinders were
obtained using a standard Monte Carlo routine to simulate a hard-disk distribution.
To obtain good statistical accuracy, it is necessary to average over an ensemble of N

c

realizations of the hard-disk distribution. The mean drag is determined by averaging
the drag obtained on all the cylinders in all of the various realizations.

To test for any possible dependence of the mean drag on N, we performed
simulations at very small Reynolds numbers with φ¯ 0.20, a¯ 4.8 and φ¯ 0.40,
a¯ 13.8 for several values of N. The mean drag and standard error (defined as the
standard deviation among the members of the ensemble divided by N "/#

c
) are reported

in table 3. The drag is independent of N to within the statistical accuracy of the
calculations. For a large enough array, one would expect the statistical errors to be
proportional to (N

c
N )−"/#. The computational costs are proportional to N

c
N. A

standard error of about 10% can be achieved using N
c
¯ 5 and N¯ 64 and this choice

was adopted for most of the subsequent computations. (The exceptions are the calcu-
lations for φ¯ 0.20 where N¯ 64 and N

c
¯ 10 and those at φ¯ 0.55 and 0.60 for

which N¯ 32 and N
c
¯ 10. Sangani & Mo (1994) performed computations for the

drag in random arrays of cylinders using a simulation of Stokes equations of motion
based on multipole expansions for the velocity disturbance due to each cylinder and a
novel method of including lubrication resistances. Using N¯ 64 and N

c
¯ 20, they

obtained F}µU¯ 46.5 and 278 at φ¯ 0.20 and 0.40, respectively. These results are
consistent with the lattice-Boltzmann results listed in table 3.
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F 21. The mean drag in a random array of aligned cylinders at Re¯ 0 is plotted as a function
of the volume fraction: D, our lattice-Boltzmann results ; ^, multipole solutions of Stokes equations
(Sangani & Mo 1994) ; , finite element solutions (Ghaddar 1996) ; *, lattice-Boltzmann results for
arrays of octagons (Noble et al. 1997). The lines correspond to a solution of Brinkman’s equations
for low φ and a lubrication model for large φ.

4.2. Stokes flow

To test the convergence of the results for random arrays with grid refinement, we
performed two sets of simulations with N

c
¯ 5, N¯ 4, and φE 0.4. In the first set of

simulations, the volume fraction and particle radius were φ¯ 0.404 and a¯ 13.8,
which corresponds to a mean spacing between neighbouring particles of 10. The linear
dimensions of the unit cell and the components of the interparticle separation vectors
were then precisely doubled and the particle radius was increased to a¯ 27.8. Since the
cylinder radius could not be precisely doubled, the volume fraction of the larger array
was φ¯ 0.409. The results are summarized in table 4. The array of large particles had
a 4–5% larger mean drag at Re¯ 0 and Re¯ 45 and this increase can be attributed
primarily to the change in the volume fraction. Therefore, we concluded that a mean
gap between the particles of 10 lattice spacings is sufficient to provide accurate results
for the drag in random arrays with Re% 45. Subsequent calculations maintained this
gap thickness with the exception of the dilute calculations φ¯ 0.05 and 0.1 for which
a gap of 16 lattice spacings was used.

Our results (circles) for the mean drag on random arrays of cylinders in the limit
ReU 0 are plotted as a function of volume fraction in figure 21. Our results are in good
agreement with the Stokes flow solutions (triangles) of Sangani & Mo (1994), and the
finite element solutions () of Ghaddar (1995). The statistical uncertainty of Ghaddar’s
results are largest at the smallest volume fractions. Whereas we maintained N

c
N¯ 320

and Sangani & Mo maintained N
c
N¯ 1280 for all the simulations, Ghaddar kept the

ratio H}a¯ 14 constant and so his N
c
N varied from 720 at φ¯ 0.58 to 60 at 0.05. We

also show the lattice-Boltzmann results (squares) of Noble et al. (1997). Although these
calculations are for octagonal cylinders, they yield essentially the same permeability as
the arrays of circular cylinders to within the statistical accuracy of the results.

The lines in figure 21 correspond to two theoretical models. At low volume fractions,
the drag in a random fixed bed can be determined from a solution of Brinkman’s
equations of motion, in which the effect of the particles is modelled as a body force
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equal to the product of the fibre number density, the velocity, and a mean drag
coefficient. This approach was used by Spielman & Goren (1968) to show that the drag
on a dilute random array of aligned cylinders satisfies the implicit relationship

F}(µU )¯ 4π}A
S
, (34)

A
S
¯

aK
"
(aκ−"/#)

κ"/#K
!
(aκ−"/#)

a#

2κ
, (35)

where K
!
and K

"
are modified Bessel functions of the second kind and the permeability

κ is related to the drag by
κ¯µUa#}(4φF ). (36)

Howells (1974) showed that the relative errors in (34) are O(1}ln# (1}φ)) in the limit of
small volume fraction. However, it may be seen in figure 21 that the Brinkman
prediction for the drag is much more robust than might be expected on the basis of the
asymptotic analysis and it remains accurate for volume fractions as large as 0.3.

In §3, we found that the drag in a concentrated periodic array could be explained in
terms of the lubrication resistance in the small gaps between the cylinders. A similar
approach may be expected to work for random arrays. However, there is a distribution
of gap thicknesses in a random array, which may be determined from the radial
distribution function for the disks. Near contact, the radial distribution function may
be approximated by

g(r)¯α
!
α

"
(r®2)α

#
(r®2)#, (37)

where r is the radial separation of the disks non-dimensionalized by a,

α
!
¯

16®7φ

16(1®φ)#
, α

"
¯®14.278.3φ®119φ# (38)

and
α
#
¯ 18.4®101φ142φ# for φ" 0.3. (39)

The expression (38) for α
!
is obtained from a theoretical solution by Verlet & Levesque

(1982), while α
"
and α

#
are obtained by fitting the first few points in Chae, Ree & Ree’s

(1969) simulations for g(r) with a quadratic function. The simulations were performed
for φ¯ 0.36, 0.45, and 0.54 and we have interpolated between these values. A
characteristic minimum gap thickness may be obtained by integration:

2πn&#+$
ε
m

#

grdr¯ 1. (40)

We approximate the drag in the random array as equivalent to that in a hexagonal
array (derived by Sangani & Acrivos 1982) with a characteristic gap thickness ε

c
, i.e.

F

µU
¯

17π

4o2 ε&/#
c

, (41)

where we choose ε
c
¯ 1.19ε

m
in order to match the simulated drag value at φ¯ 0.6.

Thus, using one adjustable parameter, we obtain a lubrication theory that is in good
agreement with the simulation results for φ& 0.4.

4.3. Small (but finite) Reynolds number

Now let us consider the dependence of the drag on the Reynolds number. Although the
standard error in the simulated mean drag is about 10%, we are able to obtain
statistically significant results for very small changes in the drag with Reynolds
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F 22. The mean drag coefficients for two sub-ensembles with φ¯ 0.20, a¯ 4.8, N
r
¯ 5 are

plotted as functions of the Reynolds number.
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F 23. The mean drag in a random array with φ¯ 0.40 and a¯ 13.8 is plotted as a function of
the Reynolds number. The solid line is the low-Re asymptote (41) with k

!
¯ 282.0 and k

#
¯ 2.01 and

the dashed line is the Ergun correlation (43) with c
!
¯ 278.3 and c

"
¯ 7.36.

number. This is possible because we use the same set of configurations at each of the
Reynolds numbers. Thus, the primary effect of the statistical errors is a systematic shift
in the drag versus Reynolds number curve as may be seen when we plot the results from
two sub-ensembles with the same value of φ¯ 0.2 in figure 22.

Mei & Auriault (1991) have shown that the initial increase in the mean drag with
Reynolds number is quadratic :

F}(µU )¯k
!
k

#
Re# for Re' 1. (42)

However, the empirical relationship due to Ergun (1952) that has been very successful
in describing experimental data on pressure drop in fixed beds is linear :

F}(µU )¯ c
!
c

"
Re. (43)

Our simulations confirm the validity of both of these expressions and show a transition
from the quadratic low-Reynolds-number asymptotic behaviour to the linear
moderate-Reynolds-number empirical scaling at ReE 3. This may be seen in figure 23,
which presents results for φ¯ 0.4.
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Before examining further numerical evidence for the small (but finite)-Reynolds-
number behaviour of the drag, we will develop a theoretical prediction for the drag in
a dilute array. Kaneda (1986) used an ensemble-averaged-equation approach to
determine the mean drag in a dilute random fixed bed of spheres, when the Reynolds
number, Re, based on the sphere diameter is small but the Reynolds number
R3Re κ"/#}(2a) based on the Brinkman screening length (or square root of the
permeability) may be of order one. His analysis can easily be extended to the present
two-dimensional flow problem. The approximations used by Kaneda to simplify the
ensemble-averaged equations can still be applied in two dimensions, albeit with
changes in the order of magnitude of the errors incurred.

The problem of determining the fluid velocity around a test cylinder in the random
array may be solved using a singular perturbation method. The inner solution, valid
within an O(a) distance from the cylinder, is unaffected by inertia and the body force
produced by the other cylinders and is given by (18).

The outer solution, valid at large O(κ"/#)¯O(a (ln (1®φ)}φ)"/#) distances, will be
obtained by solving an approximate form of the conditional ensemble average of the
Navier–Stokes equations, (4) and (5), with the centre of one cylinder held fixed, i.e.

ρ¡[©uuª
"
¡©pª

"
®µ~#©uª

"
®© fª

"
¯Fδ(x), (44)

¡[©uª
"
¯ 0, (45)

Here F is the force per unit length that the test cylinder exerts on the fluid and f is the
force per unit volume that the remaining cylinders exert on the fluid. In (44), the effect of
the test cylinder on the fluid velocity has been represented as a point force. This approxi-
mation leads to O(a}κ"/#) relative errors at the large separations under consideration.

To leading order in small φ, the drag on a cylinder is determined solely by the length
scale on which the fluid velocity disturbance produced by the cylinder begins to decay.
As long as R%O(1), this length scale will remain the Brinkman screening length, κ"/#,
and the relative change in the drag due to inertia will be small, O(1}ln (1}φ)). We will
neglect this change when calculating the fluid velocity disturbance produced by the
fibre using (44).

The force per unit volume, © fª
"
, is small in a dilute array and only becomes

important at large O(κ"/#)¯O(a(φ}ln (1}φ))−"/#) separations from the test cylinder
where the viscous stress term µ~#©uª

"
is also small. At these large separations, © fª

"
can be approximated as the product of the fibre number density and the drag
experienced by a fibre in a uniform velocity field of strength ©uª

"
. In addition, we can

neglect the Reynolds-number dependence of © fª
"
. Thus, with O(1}ln (1}φ)) relative

errors,
© fª

"
E®(µ}κ)©uª

"
, (46)

where κ is the Stokes flow permeability given by (36), (34) and (35).
The inertial term in (44) may be written in the form

ρ¡[©uuª
"
¯ ρU[¡©uª

"
ρ©u«ª

"
[¡©uª

"
ρ¡[©u§u§ª

"
, (47)

where u«¯u®U and u§¯u«®©u«ª
"
. The fluid velocity disturbance ©u«ª

"
is

O(1}ln (1}φ)) smaller than the mean velocity U in the outer region so the second
term on the right-hand side of (47) can be neglected. The spatially varying Reynolds
stress produced by the test cylinder results from multiple reflections involving the
test cylinder and one additional cylinder; it may be approximated as

©u§u§ª
"
E n&dx

#
©u§ª

#
©u§ª

#
, (48)
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where x
#

is the position of the second cylinder’s centre. The velocity field due to
multiple reflections is ©u§ª

#
¯O(U}(ln (1}φ))#). The integral converges at the Brinkman

screening length κ"/#. Therefore, the spatially varying Reynolds stress can be determined
to be O(1}(ln (1}φ))$) smaller than the first term on the right-hand side of (47) and it
will be neglected.

Using the aforementioned approximations, the momentum equation reduces to a
form that will be referred to as the Oseen–Brinkman equation:

ρU[¡©uª
"
¡©pª

"
®µ~#©uª

"
(µ}κ)©uª

"
¯Fδ(x). (49)

Equations (45) and (49) constitute a linear set of equations for the conditionally
averaged velocity and pressure. Solving these equations after taking a Fourier
transform yields the following expression for the fluid velocity disturbance induced by
the test cylinder:

©uW «ª
"
¯uW

S
uW

I
, (50)

where the fluid velocity disturbance in the absence of inertia is

uW
S
¯

F[(I®QQ)

µ(2πq)#µκ−"
(51)

and the change in the velocity due to inertia is

uW
I
¯

®ρU[2πiqF[(I®QQ)

[µ(2πq)#µκ−"] [µ(2πq)#µκ−"ρU[2πiq]
. (52)

Evaluating the extra velocity disturbance due to inertia at the centre of the test cylinder
gives

u
I
(x¯ 0)¯&dquW

I
¯®

A
I
F

4πµ
, (53)

where

A
I
¯®

1

2
0 2

R#


1

21 ln 01
R#

4 1 . (54)

Matching the outer solution derived above to the inner solution (18) gives rise to the
following relationship between the drag on the cylinder and the mean velocity :

F

µU
¯

4π

A
S
®A

I

. (55)

Here A
S

is the value of 4πµU}F under conditions of Stokes flow. The dilute analysis
given above would yield the result that A

S
is equal to the low-volume-fraction

asymptote of (35), i.e. A
S
¯ ln (1}φ"/#). However, more accurate predictions for finite

φ can be obtained by retaining the full implicit relations for A
S

obtained by solving the
Brinkman equation around a cylinder of finite radius, i.e. (35) and (36).

In the limit R' 1, (55) and (54) reduce to the form (42) expected for the regular
perturbation to the drag at low Reynolds number with the coefficient controlling the
first effects of inertia given by

k
#
¯

k
!

256φ
. (56)

We have performed sequences of low-Reynolds-number simulations for several φ
and obtained the coefficients in the asymptotic expression (42). The ratio k

#
φ}k

!
is
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F 24. The ratio of coefficients, k
#
φ}k

!
, describing the first effects of inertia at low Reynolds

number are plotted as a function of φ. The circles are simulation results and the dashed line is the
result, k

#
φ}k

!
¯ 1}256, obtained from the Oseen–Brinkman theory.

plotted versus φ in figure 24, comparing the simulations (circles) with the
Oseen–Brinkman theory (dashed line). Although the theory is asymptotically valid
only in the limit φU 0, it can be seen that the Oseen–Brinkman expression for the first
effects of inertia (56), like the Brinkman result for the drag in Stokes flow (34)–(36), is
accurate even for moderate φ. In view of the similarities in the derivations of k

#
for

dilute periodic and random arrays, it is surprising that the Oseen predictions for
random arrays are much more accurate at moderate φ than those for periodic arrays.
Both analyses neglect terms that are O(1}ln (1}φ)) as φU 0. It is possible that there is
a cancellation of errors in the random array analysis between the effects of the
nonlinear inertial term and the Reynolds stress.

Equations (55) and (54) provide predictions for the drag that are valid when the
Reynolds number, R, based on the Brinkman screening length is order one, as long as
the Reynolds number, Re, based on the particle diameter is small. However, the
usefulness of this R¯O(1) theory is limited, because the screening length only becomes
appreciably larger than the cylinder diameter for very small values of volume fraction.
In figure 25, we present the predictions of the Oseen–Brinkman theory for φ¯ 0.002.
The full theory (solid line) approaches the regular perturbation asymptote (dotted line)
for R' 1. When R( 1, the inertial (Oseen) term dominates over the D’Arcy term in
(49) and the full theory approaches the solution of Oseen’s equations for flow past a
single cylinder (dashed line). We performed simulations for φ¯ 0.002 with a¯ 0.61.
The simulation results (circles) follow the finite-R theory (solid line) for a limited range
Re! 0.6 after the full theory deviates from the small-R asymptote (dotted line).
However, at larger Re, the simulations approach the empirical results for finite-Re flow
past a single cylinder (dash-dot line), which deviates from the Oseen approximation at
finite Re. Thus, it would be necessary to consider a still more permeable array to obtain
an extended range of Reynolds numbers over which the Oseen–Brinkman theory
describes the flow.

4.4. Moderate Reynolds numbers

We noted earlier that the mean drag in arrays with moderate values of φ exhibits a
transition from a quadratic Re dependence at small Reynolds number to a linear
dependence at higher Re, cf. figure 23. The linear relationship between drag and
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F 25. The mean drag in a random array with φ¯ 0.0020 is plotted as a function of the Reynolds
number: D, the simulations; ——, the Oseen–Brinkman theory valid for Re' 1; ……, the
asymptote for Re(H}a)' 1; – – –, the Oseen result for a single cylinder; – .– .–, the empirical results
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F 26. The mean drag is plotted as a function of Reynolds numbers for arrays with φ¯ 0.05 (D),
0.1 (*), 0.2 (V), and 0.4 (^) ; V, U, a¯ 4.8 and 9.8, respectively ; D, E, a¯ 2.7 and 4.8,
respectively.

Reynolds number at moderate values of the volume fraction and Reynolds number is
quite robust as may be seen in figure 26, where simulation results for φ¯ 0.05, 0.1, 0.2
and 0.4 are compared with the linear empirical relationship (43).†

Since the empirical relationship (43) provides a good description of the drag, we can
use the ratio of the coefficients, c

"
}c

!
, to characterize the Reynolds-number dependence

of the drag for arrays with a wide variety of volume fractions. We performed a series
of three simulations with Reynolds numbers in the range 0!Re! 30 for each volume
fraction and obtained the coefficients from a linear regression. The ratio c

"
}c

!
is plotted

† Some of the flows at the larger Reynolds numbers are unsteady. The oscillations in the mean
velocity, however, are quite small. This is likely to be due to the fact that the vortex shedding from
different cylinders in the random array is out of phase. The reported values of the drag represent time
averages.
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F 27. The ratios c
"
}c

!
of the two coefficients obtained by fitting the Ergun empirical equations

(43) to our simulation data (D) are plotted as a function of the volume fraction; *, the
corresponding data for arrays of octagons (Noble et al. 1997).

as a function of volume fraction in figure 27. It can be seen that this ratio decreases
monotonically with increasing volume fraction, indicating that inertial effects are
weaker in more concentrated arrays.

We can rationalize this result by considering the relative importance of viscous
effects and inertia in the limit as the volume fraction approaches maximum packing.
It was noted earlier that the pressure drop required to overcome the viscous resistance
to flow through the small gaps (of thickness aε) between the cylinders is O(µU}(aε&/#)).
When the inertia of the fluid is important, there is a pressure drop required to
accelerate the fluid to the high velocity u

g
¯O(Uε−") it achieves in the gap. This

pressure drop may be estimated using Bernoulli’s equation to be O(ρU #ε−#). The ratio
of the inertial to the viscous pressure drop is Re ε"/#, suggesting that c

"
}c

!
will decrease

as one approaches the maximum packing limit, i.e. as εU 0.
Noble et al. (1997) studied moderate-Reynolds-number flows through random

arrays of octagonal cylinders. Their data for φ¯ 0.1 at Re¯ 5, 10 and 15 show a linear
dependence of the drag on Re, consistent with the present simulations and the Ergun
relationship. Only two data points at moderate Re (5 and 10) were given for φ¯ 0.24.
Assuming that the Ergun relation applies at φ¯ 0.24 as well as φ¯ 0.1, the two
squares in figure 26 can be obtained by fitting the data. Thus, the Ergun coefficients
obtained from fitting Noble et al.’s low-to-moderate volume fraction data are in
excellent agreement with those obtained in the present study. At the higher volume
fraction, φ¯ 0.36, Noble et al. (1997) observed an extended region of nonlinear Re-
dependence for F}µU, extending to the highest Reynolds number (Re¯ 32) that they
investigated. This behaviour may be contrasted with that illustrated in figure 23 where
we observed a transition to a linear F}µU versus Re behaviour at ReE 5. These
comparisons indicate that the drag is insensitive to the small differences in shape
between circles and octagons as long as the spacing between the particles is reasonably
large. However, at higher concentrations, the gaps between circular particles are
narrower and more tapered whereas the gaps between aligned octagons are wider (for
the same φ) and relatively straight. The flow in the gaps between the octagons is closer
to a unidirectional flow than that between the circles. Furthermore, the velocity in the
gaps between the octagons is smaller than that in the narrower gaps between the circles.
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For these reasons the inertial effects are weaker in the arrays of octagons, the transition
to Ergun behaviour is delayed, and the drag is smaller than in the arrays of circles.

5. Conclusions

This paper has reported the results of lattice-Boltzmann simulations for the drag (or
pressure drop) versus flow rate relationship in arrays of aligned cylinders at finite
Reynolds numbers. These numerical calculations have been supplemented by
theoretical calculations valid in the limit Re' 1. Both random arrays and periodic
square arrays have been investigated.

The results for very small Reynolds numbers are consistent with those derived from
solutions of Stokes equations of motion in periodic (Sangani & Acrivos 1982) and
random (Sangani & Mo 1994) arrays. The initial increase in F}(µU ) with increasing
Reynolds number is quadratic as predicted by Mei & Auriault (1991). We have
developed analytical predictions for the coefficient of the quadratic term in the limits
of small and large volume fraction. As the volume fraction in a square array
approaches the close-packing limit, all of the fluid must flow through the small gap aε
between neighbouring cylinders and the pressure drop is controlled by the flow in this
lubrication gap. Because of the early unidirectional nature of the flow in the gap, the
effects of inertia are small and the coefficient of the quadratic term is proportional to
ε.

The fluid velocity in a dilute square array can be obtained by a singular perturbation
analysis based on a viscous-dominated inner region near the cylinder and an outer
region whose size is comparable to the inter-fibre spacing. Inertia is important only in
the outer region when the Reynolds number based on the cylinder diameter is small but
the Reynolds number based on the fibre spacing is O(1). A similar perturbation
analysis can be performed on the ensemble-averaged equations of motion in a dilute
random array. Inertial effects are strong in dilute periodic and random arrays, because
the relevant Reynolds number is based on the largest length scale in the array, i.e. the
inter-cylinder spacing in a periodic array and the Brinkman screening length in a
random array. The idea that the Reynolds and Strouhal numbers based on the inter-
fibre spacing are the most relevant parameters in dilute fibre beds was also suggested
in our studies of dynamic transitions at higher Reynolds numbers.

Numerical simulations were performed for flows through square arrays of cylinders
at Reynolds numbers up to 190 and a number of interesting phenomena were observed.
The linearity of Stokes equations of motion requires that the pressure drop in a square
array must be independent of the angle that the mean velocity makes with the array at
Re¯ 0. However, at larger Reynolds numbers, a very strong anisotropy of the pressure
drop versus flow rate relationship is observed. The pressure drop required to drive the
flow along one of the principle axes of symmetry of the flow is much smaller than that
required to drive off-axis flows. In addition, the direction of the mean velocity vector
does not in general coincide with the direction of the pressure gradient.

As the flow rate in the simulations was increased, transitions to unsteady flow were
observed. In some cases, the temporal variations of the mean velocity even become
chaotic, while the fluid flow remains two-dimensional. The critical Reynolds numbers
for the onset of unsteady flow, period doubling, and transition to chaos depend on the
volume fraction and the orientation of the imposed pressure gradient. Even the nature
of the dynamic transitions changes with the orientation of the pressure gradient.
Period-doubling transitions were observed for pressure gradients near the primary axis



Flows through periodic and random arrays of cylinders 65

of the array, while transitions to odd multiples of the original period were found for
pressure gradients along the diagonal of the array.

The permeability of a square array of cylinders under Stokes flow conditions
increases monotonically with decreasing volume fraction. However, simulations for
moderate-Reynolds-number on-axis flow through dilute square arrays indicate that the
drag can actually be lower than that on an isolated cylinder as a result of the drafting
of each cylinder in the wake of its predecessors in the same row.

Simulations were performed for flows through random arrays of cylinders with
Reynolds numbers as high as 80. The ratio of the mean drag to the mean velocity,
F}µU, exhibits a quadratic dependence on Re at small Reynolds numbers as already
noted. However, for Reynolds numbers greater than about 5, there is a transition to
a linear F}µU versus Re behaviour of the form anticipated by the empirical Ergun
equation. The drag versus flow rate relationship for a large range of volume fractions
was characterized by fitting the results of the simulations to the Ergun equation. The
ratio, c

"
}c

!
, of the inertial to the viscous coefficient decreases monotonically with

increasing volume fraction. Near the close-packing limit, the pressure drop is
controlled by the viscous pressure gradient required to drive flow through the narrow
lubrication gaps between neighbouring cylinders.

This work was supported by the National Science Foundation through grant
number CTS-9526149. The computations were performed on the facilities of the
Cornell Theory Center.
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